H(t)=-16t^2+t+5

Simple and best practice solution for H(t)=-16t^2+t+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+t+5 equation:



(H)=-16H^2+H+5
We move all terms to the left:
(H)-(-16H^2+H+5)=0
We get rid of parentheses
16H^2-H+H-5=0
We add all the numbers together, and all the variables
16H^2-5=0
a = 16; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·16·(-5)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*16}=\frac{0-8\sqrt{5}}{32} =-\frac{8\sqrt{5}}{32} =-\frac{\sqrt{5}}{4} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*16}=\frac{0+8\sqrt{5}}{32} =\frac{8\sqrt{5}}{32} =\frac{\sqrt{5}}{4} $

See similar equations:

| 27-8y=7-4(2y-5) | | x+2|3=4 | | 280/t=20 | | 3(x+7)=2(4+33) | | 418/d=19 | | 4c-3=4c+2 | | 3(x+7)=2(4x=33) | | +1)20-(3x-9)-2=-1(-11x | | z-364/20=25 | | F(13)=5x+2x-13 | | 3(x+6)=2(2x+13) | | 6a−4=6+a | | |3k+12|=|k| | | 41=-3(3n+1)-2n | | 12.5+3x=21.5 | | 651=q/25+630 | | 2÷5e+4=9 | | 4(x−4)+5=4x | | 3n+10=7 | | -9+p/7=-11 | | 3=g/27-5 | | 10x+2=1000,5x | | 4(x−4)+5=4x−10 | | j+54/12=9 | | 2(x−3)+2=2x−4 | | g/20-3=3 | | y-3=4y+7 | | 18+4.50h=12+5.75h | | 7h-49=609 | | -16+3x=-24=14x | | 12.5+3x=45.5 | | 7/12m=14 |

Equations solver categories